Copied to
clipboard

G = C23.42D20order 320 = 26·5

13rd non-split extension by C23 of D20 acting via D20/D10=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.42D20, C24.45D10, C23.50(C4×D5), (C22×C10).61D4, (C22×C4).23D10, C22.41(C2×D20), (C22×Dic5)⋊12C4, C23.50(C5⋊D4), C53(C23.34D4), (C23×Dic5).3C2, (C22×C20).22C22, (C23×C10).26C22, C23.276(C22×D5), C10.10C4210C2, C10.44(C42⋊C2), C22.42(D42D5), (C22×C10).318C23, C2.3(C22.D20), C22.22(D10⋊C4), C10.70(C22.D4), C2.1(C23.18D10), C2.12(C23.11D10), (C22×Dic5).206C22, (C2×C22⋊C4).5D5, C22.122(C2×C4×D5), C2.7(C2×D10⋊C4), (C2×C10).149(C2×D4), (C10×C22⋊C4).6C2, C10.75(C2×C22⋊C4), C22.46(C2×C5⋊D4), (C2×C23.D5).5C2, (C2×C10).139(C4○D4), (C2×C10).77(C22⋊C4), (C22×C10).114(C2×C4), (C2×C10).205(C22×C4), (C2×Dic5).148(C2×C4), SmallGroup(320,570)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C23.42D20
C1C5C10C2×C10C22×C10C22×Dic5C23×Dic5 — C23.42D20
C5C2×C10 — C23.42D20
C1C23C2×C22⋊C4

Generators and relations for C23.42D20
 G = < a,b,c,d,e | a2=b2=c2=d20=1, e2=cb=bc, ab=ba, dad-1=eae-1=ac=ca, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd-1 >

Subgroups: 686 in 218 conjugacy classes, 79 normal (19 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C2×C22⋊C4, C23×C4, C2×Dic5, C2×Dic5, C2×C20, C22×C10, C22×C10, C22×C10, C23.34D4, C23.D5, C5×C22⋊C4, C22×Dic5, C22×Dic5, C22×C20, C23×C10, C10.10C42, C2×C23.D5, C10×C22⋊C4, C23×Dic5, C23.42D20
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, D10, C2×C22⋊C4, C42⋊C2, C22.D4, C4×D5, D20, C5⋊D4, C22×D5, C23.34D4, D10⋊C4, C2×C4×D5, C2×D20, D42D5, C2×C5⋊D4, C23.11D10, C22.D20, C2×D10⋊C4, C23.18D10, C23.42D20

Smallest permutation representation of C23.42D20
On 160 points
Generators in S160
(1 34)(2 144)(3 36)(4 146)(5 38)(6 148)(7 40)(8 150)(9 22)(10 152)(11 24)(12 154)(13 26)(14 156)(15 28)(16 158)(17 30)(18 160)(19 32)(20 142)(21 111)(23 113)(25 115)(27 117)(29 119)(31 101)(33 103)(35 105)(37 107)(39 109)(41 69)(42 81)(43 71)(44 83)(45 73)(46 85)(47 75)(48 87)(49 77)(50 89)(51 79)(52 91)(53 61)(54 93)(55 63)(56 95)(57 65)(58 97)(59 67)(60 99)(62 122)(64 124)(66 126)(68 128)(70 130)(72 132)(74 134)(76 136)(78 138)(80 140)(82 131)(84 133)(86 135)(88 137)(90 139)(92 121)(94 123)(96 125)(98 127)(100 129)(102 141)(104 143)(106 145)(108 147)(110 149)(112 151)(114 153)(116 155)(118 157)(120 159)
(1 34)(2 35)(3 36)(4 37)(5 38)(6 39)(7 40)(8 21)(9 22)(10 23)(11 24)(12 25)(13 26)(14 27)(15 28)(16 29)(17 30)(18 31)(19 32)(20 33)(41 69)(42 70)(43 71)(44 72)(45 73)(46 74)(47 75)(48 76)(49 77)(50 78)(51 79)(52 80)(53 61)(54 62)(55 63)(56 64)(57 65)(58 66)(59 67)(60 68)(81 130)(82 131)(83 132)(84 133)(85 134)(86 135)(87 136)(88 137)(89 138)(90 139)(91 140)(92 121)(93 122)(94 123)(95 124)(96 125)(97 126)(98 127)(99 128)(100 129)(101 160)(102 141)(103 142)(104 143)(105 144)(106 145)(107 146)(108 147)(109 148)(110 149)(111 150)(112 151)(113 152)(114 153)(115 154)(116 155)(117 156)(118 157)(119 158)(120 159)
(1 104)(2 105)(3 106)(4 107)(5 108)(6 109)(7 110)(8 111)(9 112)(10 113)(11 114)(12 115)(13 116)(14 117)(15 118)(16 119)(17 120)(18 101)(19 102)(20 103)(21 150)(22 151)(23 152)(24 153)(25 154)(26 155)(27 156)(28 157)(29 158)(30 159)(31 160)(32 141)(33 142)(34 143)(35 144)(36 145)(37 146)(38 147)(39 148)(40 149)(41 129)(42 130)(43 131)(44 132)(45 133)(46 134)(47 135)(48 136)(49 137)(50 138)(51 139)(52 140)(53 121)(54 122)(55 123)(56 124)(57 125)(58 126)(59 127)(60 128)(61 92)(62 93)(63 94)(64 95)(65 96)(66 97)(67 98)(68 99)(69 100)(70 81)(71 82)(72 83)(73 84)(74 85)(75 86)(76 87)(77 88)(78 89)(79 90)(80 91)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160)
(1 99 143 60)(2 127 144 67)(3 97 145 58)(4 125 146 65)(5 95 147 56)(6 123 148 63)(7 93 149 54)(8 121 150 61)(9 91 151 52)(10 139 152 79)(11 89 153 50)(12 137 154 77)(13 87 155 48)(14 135 156 75)(15 85 157 46)(16 133 158 73)(17 83 159 44)(18 131 160 71)(19 81 141 42)(20 129 142 69)(21 92 111 53)(22 140 112 80)(23 90 113 51)(24 138 114 78)(25 88 115 49)(26 136 116 76)(27 86 117 47)(28 134 118 74)(29 84 119 45)(30 132 120 72)(31 82 101 43)(32 130 102 70)(33 100 103 41)(34 128 104 68)(35 98 105 59)(36 126 106 66)(37 96 107 57)(38 124 108 64)(39 94 109 55)(40 122 110 62)

G:=sub<Sym(160)| (1,34)(2,144)(3,36)(4,146)(5,38)(6,148)(7,40)(8,150)(9,22)(10,152)(11,24)(12,154)(13,26)(14,156)(15,28)(16,158)(17,30)(18,160)(19,32)(20,142)(21,111)(23,113)(25,115)(27,117)(29,119)(31,101)(33,103)(35,105)(37,107)(39,109)(41,69)(42,81)(43,71)(44,83)(45,73)(46,85)(47,75)(48,87)(49,77)(50,89)(51,79)(52,91)(53,61)(54,93)(55,63)(56,95)(57,65)(58,97)(59,67)(60,99)(62,122)(64,124)(66,126)(68,128)(70,130)(72,132)(74,134)(76,136)(78,138)(80,140)(82,131)(84,133)(86,135)(88,137)(90,139)(92,121)(94,123)(96,125)(98,127)(100,129)(102,141)(104,143)(106,145)(108,147)(110,149)(112,151)(114,153)(116,155)(118,157)(120,159), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,80)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(81,130)(82,131)(83,132)(84,133)(85,134)(86,135)(87,136)(88,137)(89,138)(90,139)(91,140)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159), (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,113)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,101)(19,102)(20,103)(21,150)(22,151)(23,152)(24,153)(25,154)(26,155)(27,156)(28,157)(29,158)(30,159)(31,160)(32,141)(33,142)(34,143)(35,144)(36,145)(37,146)(38,147)(39,148)(40,149)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,92)(62,93)(63,94)(64,95)(65,96)(66,97)(67,98)(68,99)(69,100)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,99,143,60)(2,127,144,67)(3,97,145,58)(4,125,146,65)(5,95,147,56)(6,123,148,63)(7,93,149,54)(8,121,150,61)(9,91,151,52)(10,139,152,79)(11,89,153,50)(12,137,154,77)(13,87,155,48)(14,135,156,75)(15,85,157,46)(16,133,158,73)(17,83,159,44)(18,131,160,71)(19,81,141,42)(20,129,142,69)(21,92,111,53)(22,140,112,80)(23,90,113,51)(24,138,114,78)(25,88,115,49)(26,136,116,76)(27,86,117,47)(28,134,118,74)(29,84,119,45)(30,132,120,72)(31,82,101,43)(32,130,102,70)(33,100,103,41)(34,128,104,68)(35,98,105,59)(36,126,106,66)(37,96,107,57)(38,124,108,64)(39,94,109,55)(40,122,110,62)>;

G:=Group( (1,34)(2,144)(3,36)(4,146)(5,38)(6,148)(7,40)(8,150)(9,22)(10,152)(11,24)(12,154)(13,26)(14,156)(15,28)(16,158)(17,30)(18,160)(19,32)(20,142)(21,111)(23,113)(25,115)(27,117)(29,119)(31,101)(33,103)(35,105)(37,107)(39,109)(41,69)(42,81)(43,71)(44,83)(45,73)(46,85)(47,75)(48,87)(49,77)(50,89)(51,79)(52,91)(53,61)(54,93)(55,63)(56,95)(57,65)(58,97)(59,67)(60,99)(62,122)(64,124)(66,126)(68,128)(70,130)(72,132)(74,134)(76,136)(78,138)(80,140)(82,131)(84,133)(86,135)(88,137)(90,139)(92,121)(94,123)(96,125)(98,127)(100,129)(102,141)(104,143)(106,145)(108,147)(110,149)(112,151)(114,153)(116,155)(118,157)(120,159), (1,34)(2,35)(3,36)(4,37)(5,38)(6,39)(7,40)(8,21)(9,22)(10,23)(11,24)(12,25)(13,26)(14,27)(15,28)(16,29)(17,30)(18,31)(19,32)(20,33)(41,69)(42,70)(43,71)(44,72)(45,73)(46,74)(47,75)(48,76)(49,77)(50,78)(51,79)(52,80)(53,61)(54,62)(55,63)(56,64)(57,65)(58,66)(59,67)(60,68)(81,130)(82,131)(83,132)(84,133)(85,134)(86,135)(87,136)(88,137)(89,138)(90,139)(91,140)(92,121)(93,122)(94,123)(95,124)(96,125)(97,126)(98,127)(99,128)(100,129)(101,160)(102,141)(103,142)(104,143)(105,144)(106,145)(107,146)(108,147)(109,148)(110,149)(111,150)(112,151)(113,152)(114,153)(115,154)(116,155)(117,156)(118,157)(119,158)(120,159), (1,104)(2,105)(3,106)(4,107)(5,108)(6,109)(7,110)(8,111)(9,112)(10,113)(11,114)(12,115)(13,116)(14,117)(15,118)(16,119)(17,120)(18,101)(19,102)(20,103)(21,150)(22,151)(23,152)(24,153)(25,154)(26,155)(27,156)(28,157)(29,158)(30,159)(31,160)(32,141)(33,142)(34,143)(35,144)(36,145)(37,146)(38,147)(39,148)(40,149)(41,129)(42,130)(43,131)(44,132)(45,133)(46,134)(47,135)(48,136)(49,137)(50,138)(51,139)(52,140)(53,121)(54,122)(55,123)(56,124)(57,125)(58,126)(59,127)(60,128)(61,92)(62,93)(63,94)(64,95)(65,96)(66,97)(67,98)(68,99)(69,100)(70,81)(71,82)(72,83)(73,84)(74,85)(75,86)(76,87)(77,88)(78,89)(79,90)(80,91), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160), (1,99,143,60)(2,127,144,67)(3,97,145,58)(4,125,146,65)(5,95,147,56)(6,123,148,63)(7,93,149,54)(8,121,150,61)(9,91,151,52)(10,139,152,79)(11,89,153,50)(12,137,154,77)(13,87,155,48)(14,135,156,75)(15,85,157,46)(16,133,158,73)(17,83,159,44)(18,131,160,71)(19,81,141,42)(20,129,142,69)(21,92,111,53)(22,140,112,80)(23,90,113,51)(24,138,114,78)(25,88,115,49)(26,136,116,76)(27,86,117,47)(28,134,118,74)(29,84,119,45)(30,132,120,72)(31,82,101,43)(32,130,102,70)(33,100,103,41)(34,128,104,68)(35,98,105,59)(36,126,106,66)(37,96,107,57)(38,124,108,64)(39,94,109,55)(40,122,110,62) );

G=PermutationGroup([[(1,34),(2,144),(3,36),(4,146),(5,38),(6,148),(7,40),(8,150),(9,22),(10,152),(11,24),(12,154),(13,26),(14,156),(15,28),(16,158),(17,30),(18,160),(19,32),(20,142),(21,111),(23,113),(25,115),(27,117),(29,119),(31,101),(33,103),(35,105),(37,107),(39,109),(41,69),(42,81),(43,71),(44,83),(45,73),(46,85),(47,75),(48,87),(49,77),(50,89),(51,79),(52,91),(53,61),(54,93),(55,63),(56,95),(57,65),(58,97),(59,67),(60,99),(62,122),(64,124),(66,126),(68,128),(70,130),(72,132),(74,134),(76,136),(78,138),(80,140),(82,131),(84,133),(86,135),(88,137),(90,139),(92,121),(94,123),(96,125),(98,127),(100,129),(102,141),(104,143),(106,145),(108,147),(110,149),(112,151),(114,153),(116,155),(118,157),(120,159)], [(1,34),(2,35),(3,36),(4,37),(5,38),(6,39),(7,40),(8,21),(9,22),(10,23),(11,24),(12,25),(13,26),(14,27),(15,28),(16,29),(17,30),(18,31),(19,32),(20,33),(41,69),(42,70),(43,71),(44,72),(45,73),(46,74),(47,75),(48,76),(49,77),(50,78),(51,79),(52,80),(53,61),(54,62),(55,63),(56,64),(57,65),(58,66),(59,67),(60,68),(81,130),(82,131),(83,132),(84,133),(85,134),(86,135),(87,136),(88,137),(89,138),(90,139),(91,140),(92,121),(93,122),(94,123),(95,124),(96,125),(97,126),(98,127),(99,128),(100,129),(101,160),(102,141),(103,142),(104,143),(105,144),(106,145),(107,146),(108,147),(109,148),(110,149),(111,150),(112,151),(113,152),(114,153),(115,154),(116,155),(117,156),(118,157),(119,158),(120,159)], [(1,104),(2,105),(3,106),(4,107),(5,108),(6,109),(7,110),(8,111),(9,112),(10,113),(11,114),(12,115),(13,116),(14,117),(15,118),(16,119),(17,120),(18,101),(19,102),(20,103),(21,150),(22,151),(23,152),(24,153),(25,154),(26,155),(27,156),(28,157),(29,158),(30,159),(31,160),(32,141),(33,142),(34,143),(35,144),(36,145),(37,146),(38,147),(39,148),(40,149),(41,129),(42,130),(43,131),(44,132),(45,133),(46,134),(47,135),(48,136),(49,137),(50,138),(51,139),(52,140),(53,121),(54,122),(55,123),(56,124),(57,125),(58,126),(59,127),(60,128),(61,92),(62,93),(63,94),(64,95),(65,96),(66,97),(67,98),(68,99),(69,100),(70,81),(71,82),(72,83),(73,84),(74,85),(75,86),(76,87),(77,88),(78,89),(79,90),(80,91)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160)], [(1,99,143,60),(2,127,144,67),(3,97,145,58),(4,125,146,65),(5,95,147,56),(6,123,148,63),(7,93,149,54),(8,121,150,61),(9,91,151,52),(10,139,152,79),(11,89,153,50),(12,137,154,77),(13,87,155,48),(14,135,156,75),(15,85,157,46),(16,133,158,73),(17,83,159,44),(18,131,160,71),(19,81,141,42),(20,129,142,69),(21,92,111,53),(22,140,112,80),(23,90,113,51),(24,138,114,78),(25,88,115,49),(26,136,116,76),(27,86,117,47),(28,134,118,74),(29,84,119,45),(30,132,120,72),(31,82,101,43),(32,130,102,70),(33,100,103,41),(34,128,104,68),(35,98,105,59),(36,126,106,66),(37,96,107,57),(38,124,108,64),(39,94,109,55),(40,122,110,62)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4L4M4N4O4P5A5B10A···10N10O···10V20A···20P
order12···2222244444···444445510···1010···1020···20
size11···12222444410···1020202020222···24···44···4

68 irreducible representations

dim111111222222224
type++++++++++-
imageC1C2C2C2C2C4D4D5C4○D4D10D10C4×D5D20C5⋊D4D42D5
kernelC23.42D20C10.10C42C2×C23.D5C10×C22⋊C4C23×Dic5C22×Dic5C22×C10C2×C22⋊C4C2×C10C22×C4C24C23C23C23C22
# reps141118428428888

Matrix representation of C23.42D20 in GL5(𝔽41)

10000
01000
00100
00010
000040
,
400000
01000
00100
00010
00001
,
10000
01000
00100
000400
000040
,
90000
013200
0392500
00001
00010
,
320000
0121800
082900
000032
000320

G:=sub<GL(5,GF(41))| [1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[9,0,0,0,0,0,13,39,0,0,0,2,25,0,0,0,0,0,0,1,0,0,0,1,0],[32,0,0,0,0,0,12,8,0,0,0,18,29,0,0,0,0,0,0,32,0,0,0,32,0] >;

C23.42D20 in GAP, Magma, Sage, TeX

C_2^3._{42}D_{20}
% in TeX

G:=Group("C2^3.42D20");
// GroupNames label

G:=SmallGroup(320,570);
// by ID

G=gap.SmallGroup(320,570);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,422,387,58,12550]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^20=1,e^2=c*b=b*c,a*b=b*a,d*a*d^-1=e*a*e^-1=a*c=c*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^-1>;
// generators/relations

׿
×
𝔽